Azasteroids. Part X.¹ Synthesis of 3,4-Dihydro-8-methoxybenzo[c]phenanthridin-1(2H)-one

By Satinder V. Kessar,* (the late) Narasimha Parkash, and Gurdev S. Joshi, Department of Chemistry, Panjab University, Chandigarh, India

1-Hydroxy- and 1-oxo-1,2,3,4-tetrahydrobenzo[c]phenanthridines have been obtained through benzyne cyclisation of anils and reduced anils derived from 5-amino-1-tetralone and appropriate 2-chlorobenzaldehydes.

WE report the synthesis of 3,4-dihydro-8-methoxybenzo[c]phenanthridin-1(2H)-one (IXb) and some of its derivatives: these compounds are analogous to ring-c aromatic steroids 2-4 and may be synthetic precursors to the hitherto unreported 7-azasteroids; they are also similar to the Chelidonium alkaloids,⁵ some of which show interesting activities.^{5,6} The known synthetic routes $^{7-17}$ to benzo [c] phenanthridines seemed unlikely to yield the desired substitution pattern, so a route based upon a novel benzyne cyclisation reaction 18,19 was investigated (Scheme).

Tetralin was converted into 5-amino-1-tetralone (II),²⁰ which was used to prepare the tetralol (III); condensation of this with the aldehyde (Ia) gave the anil (IVa), and benzyne cyclisation of (IVa) gave 1,2,3,4-tetrahydrobenzo[c]phenanthridin-1-ol (VIa) in 40% yield. Cyclisation of the reduced anil (VII) proceeded quantitatively give 1,2,3,4-tetrahydrobenzo[c]phenanthridin-1-ol to (VIa) rather than expected hexahydro-compound (VIIIa): in (VIIIa), aromatisation is favoured and dehydrogenation occurs during work-up in air. Alcohol (VIa) was readily oxidised ²¹ to 3,4-dihydrobenzo[c]phenanthridin-1(2H)-one (IXa). The ketone (IXa) was also prepared, in 81% yield, by direct cyclisation of the keto-anil (Va).

Cyclisation of the keto-benzylamine (Xa) gave the desired 3,4,5,6-tetrahydrobenzo[c]phenanthridin-1(2H)one (XIa) in 88% yield. Treatment of (XIa) with sodium borohydride not only reduced the carbonyl function, but also caused dehydrogenation of ring c, and gave the alcohol (VIa) as the only isolable product 1,2,3,4,5,6-hexahydrobenzo[c]phen-(>95%): thus anthridin-1-ol (VIIIa) appears to be too unstable to allow isolation.

¹ Part IX, S. V. Kessar, P. Jit, K. P. Mundra, and A. K. Lumb, J. Chem. Soc. (C), 1971, 266. ² C. F. Hammer, D. S. Savage, J. B. Thomson, and R.

Stevenson, Tetrahedron, 1964, 20, 929, ³ M. M. Coombs, J. Chem. Soc. (C), 1969, 2484.

⁴ S. V. Kessar, A. K. Sobti, and G. S. Joshi, J. Chem. Soc. (C), 1971, 259.

⁵ R. H. F. Manske and H. L. Holmes, 'The Alkaloids,' Academic Press, New York, 1954, vol. 4, p. 253.

A. L. Bluhm, Diss. Abs., 1959, 20, 880.

 ⁷ C. Graebe, Annalen, 1904, 335, 122.
⁸ J. Kenner, W. H. Ritchie, and F. S. Statham, J. Chem. Soc., 1937, 1169.

⁹ B. L. Hollingsworth and V. Petrow, J. Chem. Soc., 1948, 1537.

¹⁰ B. D. Tilak, T. Ravindranathan, and K. N. Subbaswami, Indian J. Chem., 1968, 6, 422.

¹¹ N. A. J. Rogers and H. Smith, J. Chem. Soc., 1955, 341.

 P. E. Cross and E. R. H. Jones, J. Chem. Soc., 1964, 5916.
S. V. Kessar, I. Singh, and A. Kumar, Tetrahedron Letters, Science Science, 1964, 5916. 1965, 2207.

The 8-methoxy-anils were prepared from 2-chloro-5methoxybenzaldehyde (Ib)²² as shown in the Scheme, and cyclisations and interconversions to secure the methoxytetracyclic systems (series b) in various states of oxidation were successful. In contrast to the demethoxy-case, the cyclisation of (Xb) proceeded with spontaneous aromatisation of ring c and only compound (IXb) was isolated; thus neither the oxo- nor the hydroxy-hexahydro-compound could be prepared in the methoxy-series. This variation in the tendency for aromatisation of ring c is puzzling, but may result from changes in the relative stabilities of planar aromatic and flexible 5,6-dihydro-phenanthridines, brought about by different steric interactions with substituents at the 1- and 10-positions.²³ However, why remote groups should have such pronounced effects remains unclear.

Compounds (VIa and b) and (IXa and b), on oral administration to rats, exhibited no significant anabolic, androgenic, or antiandrogenic activity.24

EXPERIMENTAL

Microanalyses were performed by L. K. Khullar and B. N. Anand, Panjab University, Chandigarh, India. To prove identity, compounds were compared by t.l.c., mixed m.p., and i.r. spectra (Nujol). Anhydrous sodium sulphate was used as drying agent.

5-Amino-1,2,3,4-tetrahydro-1-naphthol (III).—Reduction of 5-amino-3,4-dihydronaphthalen-1(2H)-one²⁰ (II) with sodium borohydride gave the 5-amino-1-tetralol (III), m.p. 106—107° (from acetone-petroleum), ν_{max} 3390 and 3220 cm⁻¹ (OH,NH) (Found: C, 73.65; H, 8.6; N, 8.7. C₁₀H₁₃NO requires C, 73.6; H, 8.05; N, 8.6%).

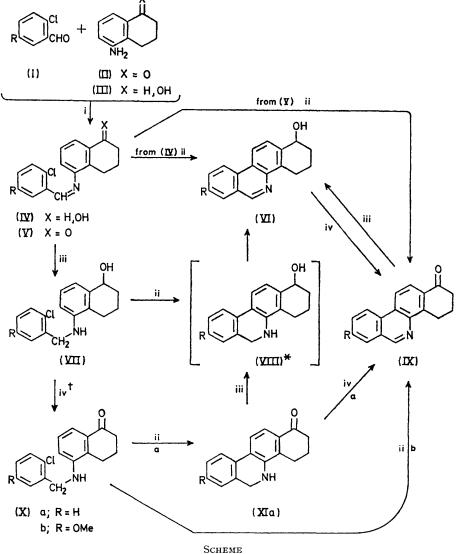
Formation of Anils.—General procedure. A mixture of o-chlorobenzaldehyde (0.351 g) and the aminotetralol (III) (0.408 g) was heated at 120° for 4 h to give 5-[(2-chlorobenzylidene)amino]-1,2,3,4-tetrahydro-1-naphthol (IVa) (0.35 g, 49%), m.p. 100–102° (from acetone-petroleum), v_{max}

¹⁴ S. F. Dyke, M. Sainsbury, and B. J. Moon, Tetrahedron, 1968, **24**, 1467.

¹⁵ R. A. Abramovitch and G. Tertzakian, Canad. J. Chem., 1963, 41, 2265.

¹⁶ C. E. Loader and C. J. Timmons, J. Chem. Soc. (C), 1968, 330.

S. F. Dyke and N. Sainsbury, *Tetrahedron*, 1967, 23, 3161.
S. V. Kessar, R. Gopal, and M. Singh, *Tetrahedron Letters*,


1969.71. ¹⁹ S. V. Kessar and M. Singh, Tetrahedron Letters, 1969, 1155.

20 K. Nakamura, J. Pharm. Soc. Japan, 1941, 61, 292 (Chem. Abs., 1950, 44, 9389)

²¹ O. Mancera, G. Rosenkranz, and F. Sondheimer, J. Chem. Soc., 1953, 2189.

22 H. H. Hodgson and H. G. Beard, J. Chem. Soc., 1926, 147. 23 B. R. T. Keene and G. L. Turner, Tetrahedron, 1971, 27, 3405.

24 G. S. Joshi, Ph.D. Thesis, University of Panjab, 1972, Appendix I.

Reagents: i, heat at 120°, 4 h; ii, KNH₂ in NH₃ (liq.); iii, NaBH₄; iv, active MnO₂. * Not isolated. † Required 10 days for (VIIb) \longrightarrow (Xb).

				Analysis						
	Recryst.			Found (%)				Required (%)		
Compound	M.p. (°C)	solvent *	v_{max}/cm^{-1}	ć	н	Ŋ	Formula	ć	H	ที่
(III)	106 - 107	\mathbf{AP}	3390, 3220	73.65	8.6	8.7	C ₁₀ H ₁₃ NO	73.6	8.05	8.6
(IVa)	100 - 102	AP	3265, 1620	70.95	5.95	5.3	C ₁₇ H ₁₆ ClNO	71.45	5.6	4 ·9
(IVb)	120 - 121	AP	3340, 3260, 1640	68.1	6.0	4 ·7	C ₁₈ H ₁₈ ClNO ₂	68.45	5.75	4.45
(Va)	136137	Α	1690, 1635	72.15	5.3	5.45	C ₁₇ H ₁₄ ClNO	71.95	4.95	4.95
(Vb)	149 - 150	A	1710, 1645	69·4	5.5	4.8	C ₁₈ H ₁₆ ClNO ₂	68·9	5.15	4.45
(VIa)	185—187	AP	3300, 1615	82.35	6.6	5.8	C ₁₇ H ₁₅ NO	81 ·9	6.05	5.6
(VIb)	198 - 199	AP	3335, 1640	76.95	5.7	5.5	$C_{18}H_{17}NO_2$	77.4	6.12	5.0
(VIIa)	104 - 105	AP	3550, 3430	71.35	6.3	4 ·9	C ₁₇ H ₁₈ CINO	70.85	$6 \cdot 3$	4.85
(VIIb)	117118	AP	3530, 3425	68.55	6.3	4 ·9	C ₁₈ H ₂₀ ClNO ₂	68.05	6.35	4 ·4
(IXa)	198 - 200	Α	1665	82.7	5.5	5.95	C ₁₇ H ₁₃ NO	82.55	$5 \cdot 3$	5.65
(IXb)	206 - 207	Α	1700, 1640	78.35	$5 \cdot 2$	5.25	$C_{18}H_{15}NO_2$	77.95	5.45	5.05
(Xa)	142 - 143	AP	3435, 3395, 1665	71.3	5.9	$4 \cdot 9$	C ₁₇ H ₁₆ CINO	$71 \cdot 45$	5.6	4.9
(Xb)	113-114	\mathbf{EP}	3405, 1695	69.05	$6 \cdot 2$	4 ·7	C ₁₈ H ₁₈ CINO ₂	68,45	5.75	$4 \cdot 45$
(XIa)	187 - 189	\mathbf{AP}	3395, 1670	81.35	$6 \cdot 2$	5.75	C17H13NO	81.9	6.02	5.6

* A = acetone, AP = acetone-petroleum, EP = ether-petroleum.

3265 (OH) and 1620 cm⁻¹ (Found: C, 70.95; H, 5.95; N, 5.3. C₁₇H₁₆ClNO requires C, 71.45; H, 5.6; N, 4.9%). Benzyne Cyclisations.—General procedure. The anil (IVa)

(0.143 g) in ether * (5 ml) was added to stirred potassium amide [from potassium (0.117 g)] in liquid ammonia (150 ml). After 45 min ammonium chloride (0.3 g) was added and ammonia was allowed to escape. Water was added and the residue was extracted with ether (3×25 ml); the extract was washed, dried, and evaporated to give a gummy complex residue (t.l.c.) which afforded 1,2,3,4tetrahydrobenzo[c]phenanthridin-1-ol (VIa) (0.05 g, 40%),

 * Compound (X) dissolved in ether-tetrahydrofuran, (IVb) in tetrahydrofuran.

m.p. 185–187° (from acetone-petroleum), ν_{max} . 3300 (OH) and 1615 cm⁻¹ (Found: C, 82·35; H, 6·6; N, 5·8. C₁₇H₁₅NO requires C, 81·9; H, 6·05; N, 5·6%).

Other anils and phenanthridines were prepared by these procedures; reductions with sodium borohydride and oxidations with manganese dioxide ²¹ were carried out by standard methods. The data for compounds prepared are in the Table.

This work was supported in part by the United States Department of Agriculture, Agricultural Research Service.

[2/1875 Received, 7th August, 1972]